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ARTICLE

Multipoint Linkage-Disequilibrium Mapping with Haplotype-Block
Structure
Maoxia Zheng and Mary Sara McPeek

The HapMap Project is providing a great deal of new information on high-resolution haplotype structure in various
human populations. This information has the potential to greatly increase the power of association mapping for a fixed
amount of genotyping. A number of methods have been proposed for the identification of haplotype blocks, common
haplotypes, and tagging single-nucleotide polymorphisms. Here, we build on this work by developing novel methods
for case-control multipoint linkage-disequilibrium (LD) mapping that gain power and speed by making explicit use of
the inferred block structure. Specifically, we developed a virtual-variant approach that uses the haplotype-block infor-
mation to greatly increase power for detection of untyped common variants associated with a trait. Because full multipoint
LD mapping can be slow, we exploited the haplotype-block information to develop a fast single-block multipoint mapping
method. Our methods are appropriate for genotype data and take into account the uncertainty in phase. We describe
the methods in the context of case-parents trios, although they are also applicable to unrelated cases and controls. Our
simulations indicate that the most important gains from taking into account the haplotype-block structure at the analysis
stage of multipoint LD mapping come from (1) greatly increased power to detect association with untyped variants and
(2) greatly improved localization of untyped variants associated with the trait. More-modest gains are obtained in im-
proving power to detect association with a variant that is typed with a moderate amount of missing data. The methods
are applied to a Crohn disease data set.
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On the basis of the suggestion of haplotype-block struc-
ture in various human populations,1–4 the International
HapMap Project,5 aimed at determining the common pat-
terns of DNA sequence variation in the human genome
for association studies, has provided a large amount of
new information about high-resolution haplotype struc-
ture. Although haplotype-block structure might not hold
generally across the whole genome,6 it has the potential
to be useful for association mapping7,8 in the regions that
show substantial haplotype-block structure. There is much
previous work on identification of blocks, common hap-
lotypes, and haplotype tagging SNPs (htSNPs).1,2,8–16 The
purpose of the present study was to build on that previous
work by developing mapping methods specifically tailored
to take advantage of the information about haplotype-
block structure.

For the purposes of our methods, a haplotype block
could consist of a set of SNPs across which there is only
a relatively small number of common haplotypes. We do
not require any conditions on pairwise linkage disequi-
librium (LD) between SNPs in a block. We impose no strict
upper limit on the number of common haplotypes in a
block, but the power and speed of the method are linked
to this number being small. In principle, a haplotype block
would not necessarily have to be an interval but could be
a union of intervals, and haplotype blocks could be over-
lapping. We assume haplotype blocks and common hap-
lotypes have been identified, and we consider robustness
of our methods to the choice of these by comparing results

obtained with the use of each of six different haplotype-
block algorithms.

We introduce four types of multipoint analysis. Some
of the potential advantages of multipoint methods include
(1) their use of more of the information in the data when
a susceptibility variant in the region is untyped or partially
typed and (2) the fact that likelihoods at nearby variants
are based on the same data, so they are formally compa-
rable for the purposes of localization. As a result, multi-
point methods have the potential to vastly improve lo-
calization over single-point methods. Because full multi-
point-likelihood methods require a model for background
LD and come with a high computational cost, we propose
two single-block multipoint methods that use only the
marker information in the same haplotype block as the
variant being tested. The resulting methods are essentially
nonparametric with respect to background LD and have
greatly reduced computation time compared with full mul-
tipoint analysis, at the cost of some loss of information.
In contrast, our two full multipoint-likelihood methods
use marker information across multiple blocks in the re-
gion of the variant being tested.

Within each of the single-block and full multipoint ap-
proaches, we first propose a method that considers asso-
ciation only with typed variants; we call these the “single-
block observed variant” (SBOV) and “full multipoint ob-
served variant” (MOV) association methods. However, in
practice, because of cost considerations, there will typi-
cally be many more untyped than typed variants in a re-
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gion. A major rationale for the HapMap Project and for
the selection of tagging SNPs (tSNPs) to identify common
haplotypes in a block is the so-called common variant–
common disease hypothesis, which suggests that com-
mon variants are particularly plausible as susceptibility
variants. To detect the presence of an untyped common
SNP associated with the trait in a particular haplotype
block, we characterize the untyped SNP by partitioning
the set of haplotypes within the block into two disjoint
subsets. That is, we assume that the SNP allele does not
vary within any common haplotype in the block and so,
for instance, the SNP might be assumed to have one allele
on a particular subset of common haplotypes and another
allele on the complement of that subset. We call these
pseudo-SNPs “virtual variants” (VVs). Using this charac-
terization, we propose both single-block VV (SBVV) and
full multipoint VV (MVV) association methods. We expect
that VV methods will extract more information on asso-
ciation with untyped variants but at the cost of a higher
penalty for multiple comparisons.

The methods we propose are appropriate for a study
design consisting of unrelated cases and controls. We are
able to apply our case-control methods to trio data by
treating the transmitted haplotypes as samples from cases
and the nontransmitted haplotypes as samples from con-
trols. Trio data contain more information about phase than
do data from unrelated cases and controls, but, otherwise,
we do not make use of the trio structure in our methods.

Simulation studies are performed to compare single-
point association analysis, SBOV, SBVV, MOV, and MVV,
in terms of power to detect association, accuracy of local-
ization of a causal variant, and robustness to choice of
haplotype-block boundaries. The methods are applied to
a Crohn disease (CD [MIM 266600]) data set.2

Methods
Single-Point Association Analysis

Various types of single-point analyses have been commonly used
to test for association of a trait with a marker. Although Pearson’s

test and the transmission/disequilibrium test (TDT)17 are per-2x

haps more widely used, we consider the likelihood-ratio test, be-
cause it allows, in a straightforward way, for incomplete infor-
mation and is the most easily extendable to multipoint-associa-
tion analysis. With complete data, the likelihood-ratio and Pear-
son’s tests are asymptotically equivalent.2x

Suppose we have genotype data, on multiple biallelic SNPs, for
trios consisting of two parents and an affected offspring. For each
SNP, for simplicity, we denote the set of possible alleles by {1,0}.
When genotype data are available for a SNP on all three members
of a trio, then one can determine unambiguously the numbers
of type 1 alleles among the transmitted and among the nontrans-
mitted alleles. The model we use for the likelihood-ratio test as-
sumes that all parental alleles are independent, with transmitted
alleles being independent, identically distributed (IID) draws from
a Bernoulli (p) distribution and nontransmitted alleles being IID
draws from a Bernoulli (q) distribution. The single-point associ-
ation test is the likelihood-ratio test of the null hypothesis p p

for a given SNP (temporarily designated “the SNP of interest”),q

versus alternative , which is based on the genotype data ofp ( q
only the SNP of interest.

Suppose we have complete (unphased) genotype data for n trios.
Let and denote the number of type 1 alleles among then nt u

transmitted and nontransmitted alleles, respectively. The single-
point likelihood-ratio test statistic for the SNP of interest is then

n 2n�n n 2n�nt t u uˆ ˆ ˆ ˆp (1 � p) q (1 � q)
T p 2 log , (1)single n �n 4n�n �nt u t uˆ ˆ[ ]q (1 � q )0 0

where and are the maximum-likelihood es-ˆ ˆp p n /2n q p n /2nt u

timators (MLEs) of p and q, respectively, under the alternative
hypothesis ( ), and is the MLE of un-ˆp ( q q p (n � n )/4n p p q0 t u

der the null hypothesis. Tsingle is known from classic theory to be
asymptotically under the null hypothesis. Under the assump-2x1

tion that the occurrence of missing genotypes in the data is in-
dependent of the true genotypes, one can compute the likeli-
hood-ratio statistic Tsingle even when some genotypes are missing.
In that case, we compute Tsingle by using the expectation-maxi-
mization (EM) algorithm18 to maximize the likelihood, instead
of by using equation (1).

In some instances, single-point association analysis has been
quite successful.19 However, when a susceptibility variant is un-
typed or typed only in some individuals, multipoint-association
analysis, in which genotypes at nearby markers are taken into
account, would be expected to extract more of the information
from the data.

Single-Block Association Analysis

Assume haplotype block boundaries and common haplotypes in
each block have been defined. We propose SBOV and SBVV, which
use the multipoint information within a single haplotype block
to detect whether there are typed or, in the case of SBVV, untyped
variants within this block that are strongly associated with the
trait.

SBOV test for association with typed variants.—The model used for
single-block association analysis can be thought of as an exten-
sion of the model used for single-point association analysis. As
before, for any given SNP, we assume that all parental alleles are
independent, with transmitted alleles being IID draws from a
Bernoulli (p) distribution and nontransmitted alleles being IID
draws from a Bernoulli (q) distribution; as before, we perform a
likelihood-ratio test of the null hypothesis , versus the al-p p q
ternative . However, in this case, the likelihood is based onp ( q
data from all typed SNPs in the same haplotype block with the
SNP of interest, whereas, for the single-point test, it was based
on only the SNP of interest. We call the resulting likelihood-ratio
test statistic “TSBOV.”

We describe the model in terms of the unobserved complete
data for each trio, which consist of the transmitted and non-
transmitted alleles for each parent for each SNP in the same hap-
lotype block with the SNP of interest. We then use the EM al-
gorithm18 to maximize the likelihood for the case of incomplete
data, where the likelihood is summed over all possible haplotypes
compatible with the observed genotype data for the trios. Let

index the markers in the block containing the SNPk p 1, … ,K
of interest. Then, for each parent, the transmitted haplotype is a
vector of length K, with the kth component equal to the parent’s
transmitted allele at marker k, and likewise for the nontransmit-
ted haplotype. Suppose d is the index of the SNP of interest. Then
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the transmitted and nontransmitted alleles at SNP d are assumed
to be IID Bernoulli (p) and IID Bernoulli (q), respectively. To model
the background LD, let denote the probabilityP (H p hFH p h )T d d

that a transmitted haplotype H is of type h, given that it matches
h at SNP d, where . We define PN similarly for non-KH,h � {1,0}
transmitted haplotypes. Both our null and alternative models as-
sume that for all choicesP (H p hFH p h ) p P (H p hFH p h )T d d N d d

of (h,d), in which case we write this probability as simply
. This would hold if, aside from the SNPa p P(H p hFH p h )h,d d d

of interest, there were no susceptibility variant in LD with any
marker in the haplotype block; in other words, in the case of a
single susceptibility variant in the region. (This still leaves open
the possibility of many other susceptibility variants in the
genome.)

In principle, for any given choice of d, the model for a ph,d

is the fully parameterized one, with KP(H p hFH p h ) 2 � 2d d

freely varying parameters (corresponding to the choices of hK2
subject to two constraints: and ). In� a p 1 � a p 1h,d h,dh:h p1 h:h p0d d

practice, because of shared ancestry in the evolution of haplo-
types, only a small fraction of the possible haplotype valuesK2
would be expected to arise in the history of the population when
K is large. In fact, the way in which haplotype blocks are con-
structed ensures that only a small number of haplotypes are pre-
sent. If complete data were available, this fully parameterized
model would therefore present little difficulty, even when K is
large, because the number of nonzero background-LD parameter
estimates would typically be quite moderate. However, when only
genotype data are observed, there can be many possible sets of
haplotypes compatible with a given family’s genotype data, so
many or even all of the background LD parameters would have
nonzero maximum-likelihood estimates, but with the majority
of these being negligible. When K is large, we therefore perform
a preprocessing step in which a subset of haplotypesKS O {1,0}
is chosen, and the model is restricted so that all haplotypes are
assumed to lie in S. For a reasonably large data set, S can be chosen
by use of existing software (e.g., PHASE20) to infer haplotypes for
all individuals in the data and then by use of the set of distinct
inferred haplotypes as S. Note that the inferred haplotypes are
used only to choose S; once S is chosen, the original genotype
data are analyzed, with the phase uncertainty taken into account
in the analysis.

We now describe two properties of our model for single-block
association analysis. First, the maximized log-likelihoods under
the null hypothesis are identical for different choices of the SNP
of interest within the same haplotype block. This is a consequence
of the fact that, under the null hypothesis, our model for the
data is that transmitted and nontransmitted haplotypes for the
block are IID draws from a fully parameterized discrete distribu-
tion on S, and the same data are used in the likelihoods for dif-
ferent choices of the SNP of interest within the same haplotype
block. Furthermore, for each choice of the SNP of interest, the
alternative model has one additional free parameter beyond the
parameters in the null model, and the same data are used in the
alternative likelihoods for different choices of the SNP of interest
within the same haplotype block. As a consequence, test results
from different SNPs within a block are formally comparable, and
so the method is expected to be particularly useful for localization
within a block.

The second property is that when genotype data are available
for the SNP of interest for all individuals, the SBOV likelihood-
ratio test statistic, , is equal to , the single-point likeli-T TSBOV single

hood-ratio test statistic (see appendix A for the outline of the
derivation). That is, when there are complete data for the SNP of
interest, then the multipoint approach provides no additional
information for testing the association of the trait with that SNP.
This is clearly a desirable property; in fact, if it did not hold, that
would signal a problem with the model. When there are incom-
plete genotype data for the SNP of interest, the two statistics are,
in general, different, with expected to provide a more pow-TSBOV

erful test.
SBVV test for association with untyped variants.—One important

aspect of haplotype-block structure is that, in each block, only a
relatively small set of tSNPs needs to be typed to distinguish the
common haplotypes from each other. Because of the generally
high level of background LD within a haplotype block—because
of the tree structure for the ancestry of the individuals, with mu-
tations occurring over the history of the population—tSNP ge-
notype data can be expected to provide information on some of
the common untyped SNPs in the block. To detect the presence
of an untyped common SNP associated with the trait, in a par-
ticular haplotype block, we characterize the untyped SNP by par-
titioning the set of haplotypes within the block into two disjoint
subsets. That is, we assume that the SNP allele does not vary
within any common haplotype in the block, so, for instance, the
SNP might be assumed to have one allele on a particular subset
of common haplotypes and another allele on the complement
of that subset. We call these pseudo-SNPs “virtual variants.”

For example, suppose that when the tSNPs are typed for a
particular haplotype block, the set S of haplotypes consists of four
distinct “common” (frequency �0.05) haplotypes, labeled 1, 2,
3, and 4, as well as a collection of “rare” (frequency of each !0.05)
haplotypes, labeled r. We consider the VVs corresponding to all
two-component partitions of S under the restriction that the rare
haplotypes are kept together and are always combined with at
least one common haplotype: (1, 234r), (2, 134r), (3, 124r), (4,
123r), (12, 34r), (13, 24r), (14, 23r), (1r, 234), (23, 14r), (24, 13r),
(2r, 134), (34, 12r), (3r, 124), or (4r, 123). Here, for instance, (23,
14r) represents a VV that is assumed to have, say, allele 1 on every
haplotype labeled 2 or 3 and allele 0 on every haplotype labeled
1, 4, or r.

The SBVV is otherwise identical to the SBOV method. In the
notation of the “SBOV test for association with typed variants”
section, the SNP of interest, d, is the VV, and the other SNPs in
the same haplotype block with it are simply the genotyped tSNPs
for that block. We call the resulting likelihood-ratio test statistic
“TSBVV.” If a VV is found to be strongly associated with the trait
and if it does not correspond (modulo rare haplotypes) to a typed
SNP, then this could be suggestive of the possibility of untyped
variation strongly associated with the trait. In that case, addi-
tional resources could be expended to explore more extensively
the SNPs in the corresponding block.

One feature that distinguishes SBVV from SBOV is that SBVV
typically involves performing more hypothesis tests per block
than does SBOV. On the one hand, SBVV has the potential to
make better use of the data than does SBOV in the case where
there is an untyped susceptibility variant, whereas, on the other
hand, there will be a higher price to pay for multiple comparisons.
This trade-off is explored in the simulation studies.

Full Multipoint-Association Analysis

Whereas the SBOV and SBVV multipoint methods use only the
information on typed SNPs within the same haplotype block as
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Table 1. Power at Level a p .05
for Site-Specific Tests at a Typed Causal SNP

pa and
Proportion
of Missing pm

Power of Method

Single
Point

SBOV MOV

Denseb Tagc Dense Tag

.42:
.00 .95 .95 .95 .95 .95
.15 .91 .95 .92 .95 .94
.30 .85 .95 .90 .95 .93

.40:
.00 .88 .88 .88 .88 .88
.15 .82 .88 .85 .88 .87
.30 .74 .88 .81 .88 .86

.35:
.00 .49 .49 .49 .49 .49
.15 .42 .48 .45 .49 .48
.30 .37 .48 .41 .49 .47

NOTE—The causal SNP is marker 31 from the CD data set2

(5th tSNP) with nontransmitted allele frequency ;q p 0.27
10,000 data sets were simulated.

a Allele frequency among transmitted alleles.
b Genotype data are simulated on all 103 SNPs of the CD

data set.2
c Genotype data are simulated on 27 tSNPs for the CD

data set.2

Table 2. Power of Regionwide Tests with Use of tSNPs
When Causal SNP Is Untyped

Causal
SNP Model
and p

Power of Method (SE)

Single
Point SBOV MOV SBVV MVV

1a:
.35 .84 (.03) .83 (.03) .81 (.03) .91 (.02) .99 (.01)
.30 .58 (.03) .58 (.03) .61 (.03) .82 (.03) .88 (.02)
.25 .30 (.03) .30 (.03) .30 (.03) .37 (.03) .43 (.04)

2b:
.50 .64 (.03) .65 (.03) .64 (.03) .93 (.02) .98 (.01)
.45 .43 (.04) .44 (.04) .44 (.04) .76 (.03) .90 (.02)
.40 .26 (.03) .26 (.03) .25 (.03) .52 (.04) .61 (.04)

NOTE.—Power at level for regionwide test with use of 27 tSNPsa p .05
when causal SNP is untyped, with estimated SE based on 200 simulated
data sets; q and p are allele frequencies among nontransmitted alleles
and transmitted alleles, respectively.

a In model 1, the causal SNP is VV (2, 134r) in block 4 with q p
, which corresponds to marker 25 in the dense-SNP set.0.14

b In model 2, the causal SNP is VV (24, 13r) in block 9 with q p
, which does not correspond to any typed marker.0.25

the SNP of interest, the corresponding full multipoint methods
use information on typed SNPs across multiple haplotype blocks
in the region of the SNP of interest. The full multipoint-associ-
ation analyses for observed variant (i.e., MOV) and for VV (i.e.,
MVV) are analogous to SBOV and SBVV, respectively.

We first describe the model for the situation in which we have
complete data for each trio. In this context, we consider complete
data to consist of the transmitted and nontransmitted haplotypes
for each parent for each haplotype block in a specified region
around the SNP of interest. Let index the haplotypet p 1, … ,B
blocks, and let be the number of typed SNPs in block t. Then,Kt

for each parent, the transmitted haplotype for the tth block is a
vector of length Kt, with the kth component equal to that parent’s
transmitted allele at the kth marker in the block, and likewise for
the nontransmitted haplotype. Let d be the index of the SNP
of interest, and let d be the index of its haplotype block. As in
the “SBVV test for association with untyped variants” section,
we assume that for allP (H p hFH p h ) p P (H p hFH p h )T d d N d d

, where and H represents a combined hap-KH,h � {1,0} K p � Ktt

lotype across all blocks. Whereas, for the single-block method,
we used a fully parameterized model for , inP(H p hFH p h )d d

the full multipoint method we use a Markov model indexed by
block. Thus, we have background LD parameters a ,v , … ,d 2r1

. Here, , where is the sam-v ,v , … ,v a p (a ,h � S ) Sdrd�1 drd�1 B�1rB d h ,d d d dd

ple space for haplotypes in block d, the block containing the SNP
of interest, and represents the con-a p P(H p h FH p h )h ,d d d d,d d,dd

ditional probability that a randomly drawn haplotype for block
d is of type , given that it matches at SNP d. Thus, has theh h ad d d

same meaning as in the “SBVV test for association with untyped
variants” section. The parameters v p [v (h ,h ),h � S ,t rt t rt t t t t1 2 1 2 1 2 1 1

are the one-step Markov transition probabilities betweenh � S ]t t2 2

adjacent haplotype blocks, where represents the prob-v (h ,h )t rt t t1 2 1 2

ability that a randomly drawn haplotype for the entire region
has haplotype in block , given that it has haplotype inh t ht 2 t2 1

block . Here, represents the sample space for the haplotypest S1 t

from block t. For an examination of this choice of model, see the
“Assessment of Goodness of Fit of the HMM for Background LD”
section.

For the incomplete-data case, we use a hidden Markov model
(HMM), which allows both likelihood calculation and maximi-
zation of the likelihood over the parameters. For each trio, we
consider the hidden Markov chain

MT MN FT FN{X ,t p 1,…,B} p {(X ,X ,X ,X ),t p 1,…,B} ,t t t t t

where denotes the mother’s transmitted haplotype in blockMTXt

t, denotes the mother’s nontransmitted haplotype in blockMNXt

t, denotes the father’s transmitted haplotype in block t, andFTXt

denotes the father’s nontransmitted haplotype in block t.FNXt

Here, { }, { }, { }, and are four independent MarkovMT MN FT FNX X X {X }t t t t

chains, parameterized as described above, with the parameters for
the transmitted and nontransmitted haplotypes differing only in
the frequency of the SNP of interest (p for the transmitted hap-
lotypes and q for the nontransmitted haplotypes). The observed
process is taken to be {Yt}, where Yt denotes the (unphased) ge-
notype data in block t for this family, with missing data permitted.
Because of the Markov structure, the HMM can be efficiently fit
to data via the EM procedure,18 by an extension of the Baum21

algorithm for HMMs.
The two properties described in the “SBOV test for association

with typed variants” section generalize to the full multipoint-
likelihood method—namely, (1) hypothesis-testing results are for-
mally comparable for different choices of the SNP of interest
across the region (not just within the same haplotype block), so
they are appropriate to use for localization of a causal SNP, and
(2) when genotype data are available for the SNP of interest for
all individuals, the full multipoint likelihood-ratio test statistics
for MOV and MVV—TMOV and TMVV—are both equal to Tsingle, the
single-point likelihood-ratio test statistic. The multipoint statis-
tics provide additional information when there are missing data
at the SNP of interest or when the SNP is untyped.
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Figure 1. Mean log-likelihood–ratio test statistic value, across
200 simulated realizations, of single-point analysis (x), SBOV (�),
and MOV (�). The horizontal axis represents the 27 tSNPs, with
equal distances according to their map order. The causal SNP is
VV (2, 134r) in block 4 (indicated by two vertical dashed lines
from the 5th tSNP to the 7th tSNP) with andq p 0.14 p p

.0.30

Figure 2. Mean log-likelihood–ratio test statistic value, across
200 simulated realizations, of SBVV (�) and MVV (�) for each VV
in each block. The causal SNP is VV (2, 134r) in block 4 (indicated
by two vertical dashed lines) with and .q p 0.14 p p 0.30

Assessment of Goodness of Fit of the HMM for Background
LD

With multipoint-likelihood methods for LD mapping, the issue
arises of how to deal with background LD. An advantage of the
single-block likelihood methods (SBOV and SBVV) over the full
likelihood methods (MOV and MVV) is that, in the former, we
are able to fully parametrize the LD model, so it is essentially
nonparametric with respect to background LD, whereas, in the
latter, we make some assumptions about the form of the back-
ground LD. On the other hand, the full likelihood method might
be expected to make more-efficient use of the data and to lead
to better localization. Therefore, it seems worth considering
whether the background-LD model we use in the full likelihood
method fits the data well. For our purposes, it is satisfactory to
find a relatively parsimonious class of models that adequately
captures the background-LD structure and that is computation-
ally feasible for use in LD mapping. With sparse, highly infor-
mative markers such as microsatellites, background-LD models
that assume independence or a Markov model of order 1 on mark-
ers have been used to model background LD, but such models
may not be adequate to capture the structure of background LD
in high-density SNP data.22

The model for background LD described in the “Full Multi-
point-Association Analysis” section is an unconstrained Markov
model of order 1, indexed by haplotype blocks rather than by
markers, and we would like to assess the goodness of fit of this
model to the nontransmitted haplotypes. Although we are in-
terested in modeling only the nontransmitted haplotypes, be-
cause of the incomplete haplotype information, we are forced to
model both the nontransmitted and the transmitted haplotypes.
Our model for the transmitted haplotypes is also an uncon-
strained Markov model of order 1 indexed by haplotype blocks,

with the connection between the parameterizations of the trans-
mitted and nontransmitted haplotype models depending on the
index d of the putative causal SNP (as detailed in the “Full Mul-
tipoint-Association Analysis” section). Because d is unknown, for
the purposes of assessing goodness of fit, we parametrize the two
Markov models independently. In other words, we simply assume
separate and possibly different initial distributions and transition
probabilities for the transmitted and nontransmitted haplotypes,
where represents the parameters for the transmitted haplotypesTv

and for the nontransmitted haplotypes.Nv

A substantial difficulty arises, however, in assessment of sig-
nificance for goodness of fit. It has been shown elsewhere23 that,
in a similar context, the ordinary parametric (or nonparametric,
for that matter) bootstrap performs poorly for moderate-sized sam-
ples. The reason is that, for haplotypes that span several blocks,
the multiblock haplotype-frequency distribution can be charac-
terized as a multinomial distribution, with a large number of the
outcomes having small nonzero probabilities. The difficulty with
the ordinary parametric (or nonparametric) bootstrap is that the
simulated realizations tend to have many fewer rare haplotypes
than does the original data set (under the assumption that the
simulated data set is of the same size as the original data set).
Rare haplotypes in the original data set are commonly “lost” in
the simulation, just by chance, and new haplotypes tend not to
be created, because of the combination of model choice and es-
timation of the parameters by maximum likelihood. For example,
if a particular haplotype in a block is not observed in data, then
the corresponding parameter would have an MLE of 0, so the
haplotype would not occur in any simulation.

To avoid this problem, we modify the model by introducing a
smoothing parameter e that reflects the fact that a new (previously
unseen) haplotype is likely to be similar (only one site off, for
instance) from a previously seen haplotype (see appendix B for
details). We take e to be a fixed constant and and to beT Nv v

unknown parameter vectors. When , we simply have thee p 0
unconstrained Markov models for transmitted and nontransmit-
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Figure 3. Mean log-likelihood–ratio test statistic value, across
200 simulated realizations, of single-point analysis (x), SBOV (�)
and MOV (�). The horizontal axis represents the 27 tSNPs, with
equal distances according to their map order. The causal SNP is
VV (24, 13r) in block 9 (indicated by two vertical dashed lines
from the 21st tSNP to the 22nd tSNP) with andq p 0.25 p p

.0.45

Figure 4. Mean log-likelihood–ratio test statistic value, across
200 simulated realizations, of SBVV (�) and MVV (�) for each VV
in each block. The causal SNP is VV (24, 13r) in block 9 (indicated
by two vertical dashed lines) with and .q p 0.25 p p 0.45

ted haplotypes described in the beginning of this subsection.
When , the transmitted and nontransmitted haplotypes aree ( 0
no longer Markov but are instead hidden Markov. Note that, for
small nonzero e, the constrained model is a good approximation
of the unconstrained Markov model, and it allows us to obtain
the right type I error, for goodness of fit, with use of the para-
metric bootstrap.

To assess the significance of goodness of fit of our models to
the data, we use a parametric bootstrap procedure described else-
where.23 We vary e until we are able to obtain the correct type I
error, which we assess by a nested set of simulations.23 In the
“Results” section, we apply this method to assess the goodness
of fit of our background LD model compared with a CD data set.2

Assessment of Significance of Association

We consider tests of two different types of null hypothesis. (1)
In a “site-specific” test, we test the null hypothesis that a partic-
ular variant is not associated with the trait. (2) In a “regionwide”
test, we test the null hypothesis that an entire region is not as-
sociated with the trait. The test statistics Tsingle, TSBOV, TSBVV, TMOV,
and TMVV are appropriate for site-specific tests, and we denote
them generically by Ts, where s stands for “site-specific.” To assess
significance for a site-specific test, we can use either the ap-2x1

proximation for Ts under the null hypothesis or a simulation-
based assessment of significance.

For a regionwide test, we specify one of Tsingle, TSBOV, TSBVV, TMOV,
and TMVV to be Ts, and we use a test statistic of the form T pm

Ts, where the maximum is taken over all sites (or over allmax
VVs, in the case of SBVV and MVV) in the region. To assess sig-
nificance for Tm, we use the following procedure to simulate from
the null distribution of Tm. Let L be the collection of inferred
nontransmitted haplotypes in the original data, with each typed

family contributing two haplotypes to L. (In practice, L can be
obtained using software such as PHASE.20) We generate replicate
trio data sets under the null hypothesis by sampling both trans-
mitted and nontransmitted parental haplotypes, with replace-
ment, from L. We then discard phase information to obtain the
corresponding genotype data for each trio. Genotypes missing in
the original data are also set to be missing in the simulated data.
We simulate data sets, each containing n trios, wherem p 1,0001

n is the number of trios in the original data set. Let denote theitm

observed value of Tm in the ith replicate data set, , and1 � i � m1

let tm denote the observed value of Tm in the original data. An
unbiased estimate of the P value associated with tm is the pro-
portion of that are �tm (or we can add 1 to the numerator1 m1t , … ,tm m

and denominator to ensure that the type I error is no larger than
the nominal).

CD Data Set Used in Data Analysis and Simulation

We analyzed a previously published data set2 consisting of 129
case-parents trios from a European-derived population who were
genotyped for 103 common SNPs in a 500-kb region of 5q31 that
may contain a genetic risk factor for CD. The whole region can
be divided into 11 blocks of varying lengths (3–92 kb) and varying
numbers of SNPs (4–32 SNPs per block). From the phased hap-
lotype data (in which phase has been inferred from the trio data
by use of an unpublished algorithm similar to PHASE20), gener-
ously provided by Mark Daly, we obtain the common haplotypes
and other distinct rare haplotypes in each block. In the data, 10%
of genotypes are missing, with a maximum missing per marker
of 32% and a maximum missing per family of 49%. We omitted
12 families that have very low haplotype information in some
blocks. The resulting data have 9.6% missing genotypes, with a
maximum missing per marker of 28% and a maximum missing
per family of 26%. Simulations are performed on the basis of this
new data set, and subsequent use of the term “CD data set” refers
to this new data set. Among these 103 dense SNPs, we choose 27
as tSNPs, where these distinguish the common haplotypes in each
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Table 3. Power of Regionwide Tests with Use of tSNPs
When Causal SNP Is Typed

p

Power of Method (SE)

Single
Point SBOV MOV SBVV MVV

.45 .86 (.02) .88 (.02) .87 (.02) .78 (.03) .80 (.03)

.40 .58 (.03) .60 (.03) .60 (.03) .51 (.04) .52 (.04)

.35 .21 (.03) .21 (.03) .22 (.03) .15 (.03) .18 (.03)

NOTE.—Power at level for regionwide test with use of 27a p .05
tSNPs when the causal SNP is typed (same SNP as in table 1), with SE
estimated on the basis of 200 simulated data sets; and pq p 0.275
are allele frequency among nontransmitted alleles and transmitted al-
leles, respectively.

Figure 5. Log-likelihood–ratio test statistic values of SBVV (�)
and MVV (�) for tSNPs of the CD data set.2

block. Where there are multiple equivalent choices of tSNPs for
a block, we gave preference to those SNPs with fewer missing
genotypes and to those sets of SNPs for which each haplotype
determined by the tSNPs has low frequency unless it is one of
the common haplotypes.

Assessment of Type I Error

To ensure that our proposed simulation procedure to assess sig-
nificance of association works well, we used the following para-
metric bootstrap approach to assess its type I error. We simulated
from the model described in appendix B, under the null hypoth-
esis that , for some choice of parameter v and constantT Nv p v p v

e. To make our simulations relevant to our data example, we set
and then set v to be , the MLE of v when the model˜e p 0.001 v

is applied to the CD data set. (In the “Results” section, we dem-
onstrate that this model does not show significant misfit to the
data.) We simulate an “outer loop” of trio data sets,m p 2002

each of size , by simulating transmitted and nontrans-n p 117
mitted haplotypes IID from the model. We then discarded the
phase information to obtain the corresponding genotype data for
each trio, including the same pattern of missing data, for each
of the replicate data sets. For each of the data sets in them m2 2

outer loop, we calculate a P value using the simulation procedure
we have described above, which involves simulating m p 5001

“inner-loop” data sets for each outer-loop data set, for a total of
simulated data sets. Type I error is estimated as the5m m p 101 2

proportion of times among the m2 outer-loop replicates that the
P value is �.05.

Assessment of Power and Accuracy

We performed simulations to investigate the power and accuracy
of localization of single-point and our various forms of multi-
point-association analysis. Specifically, we address the following
questions. (1) When the causal SNP is typed but with missing
genotypes, how much extra power do we gain by using multi-
point analysis instead of single point, and is use of the more
computationally intensive full multipoint method a substantial
improvement over just taking into account multipoint informa-
tion within blocks? (2) When the causal SNP is untyped, do our
multipoint methods that are specifically tailored to detect un-
typed variants perform better than the single-point and other
multipoint methods, even though the former pay a greater price
in terms of multiple comparisons? (3) Does multipoint-associa-
tion analysis locate the causal SNP (typed or untyped) better than
does single-point analysis? We propose three sets of simulations
to answer these questions.

In the first set of simulations, we assess the power of the site-
specific single-point, SBOV, and MOV association tests at a causal
SNP that is typed with various proportions of missing genotypes.
Let L denote the collection of inferred nontransmitted haplotypes
in the CD data set.2 Let q be the frequency in L of allele 1 at the
causal SNP (taken to be the 5th tSNP, corresponding to the 31st
dense SNP, which is in block 4). In the simulations, we vary the
value of p, the frequency of allele 1 at the causal SNP among
transmitted haplotypes. We draw nontransmitted haplotypes in-
dependently with replacement from L, and we draw transmitted
haplotypes independently with replacement from L′, with hap-
lotype frequencies altered in the following way: if a haplotype
having frequency f in L has allele 1 at the causal SNP, we set its
haplotype frequency in to be ; otherwise we set its′ ′L f p fp/q
haplotype frequency in L′ to be . As a result,′f p f(1 � p)/(1 � q)
allele 1 at the causal SNP will have frequency p in L′. We obtain
simulated genotype data by discarding the phase information and
setting each genotype at the causal SNP to be missing indepen-
dently, at random, with probability pm. We perform this procedure
both for the original “dense” set of 103 SNPs and for the “tag”
set of 27 SNPs.

In the second set of simulations, we assume that the causal
SNP is untyped and compare the power of the regionwide single-
point, SBOV, MOV, SBVV, and MVV tests, to detect association
on the basis of tSNPs. We also compare them in terms of their
usefulness for localizing the causal variant by considering the
mean log-likelihood–ratio test statistic for each variant in the
region for each method. If the maximum of the mean test statistic
is at or near the causal SNP for one method but not for another,
we take this as an indication that the former method may be
more useful for localization than the latter. The simulation is
performed as above, with only the 27 tSNPs assumed to be typed
and with the untyped causal variant taken to be either VV (2,
134r) in block 4, which corresponds to marker 25 in the dense-
SNP set, or VV (24, 13r) in block 9, which does not correspond
to any marker in the dense-SNP set.

In the last set of simulations, we compare the power of the
regionwide single-point, SBOV, MOV, SBVV, and MVV association
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Table 4. Goodness of Fit of Background-LD Models for the CD Data Set2

Goodness of Fit

LEa Model
Markov on
Markers

Markov on
Blocks with
e p .001

Goodness-of-fit test statistic LR1
b LR2

c Likelihood
Type I error (SE) .05 (.007) .06 (.008) .05 (.02)
Goodness-of-fit P value (SE or CId) 0 (0–.003) 0 (0–.003) .06 (.02)

NOTE.—To assess the type I error and goodness of fit of the background-LD models, (numberm1

of inner-loop iterations) is set to be 1,000 for the LE model and the Markov model on markers
and to be 200 for the Markov model on blocks with . m2 (number of outer-loop iterations)e p .001
is set to be 1,000 for the LE model and Markov model on markers and to be 100 for the Markov
model on blocks with .e p .001

a Markers are assumed to be independent.
b LR1 is the ratio of the maximized likelihoods of the LE model and the Markov model on markers.
c LR2 is the ratio of the maximized likelihoods of the Markov model on markers and the Markov

model on haplotype blocks with .e p 0
d The ranges represent the 95% CI for the P value, based on an exact binomial distribution

calculation.

Table 5. Regionwide-Significant SNPs ( ) in the CDa p .05
Data Set2

Marker Block qa pm
b

Test Statistic Value

Single
Point TDT SBOV MOV

26� 4 .36 .04 17.38* 15.87* 18.29* 18.25*
27� 4 .35 .09 16.13* 14.62* 18.31* 18.27*
28� 4 .35 .08 18.19* 16.13* 19.13* 19.09*
34� 4 .35 .09 13.89* 13.62* 16.06* 15.85*
39� 5 .38 .07 10.12 9.00 13.30* 13.13*
42 6 .38 .23 9.46 8.49 11.28* 13.73*
49� 7 .44 .16 8.15 8.34 11.33* 11.60
74� 7 .37 .07 9.46 9.14 18.95* 19.14*
78� 8 .45 .03 11.45* 10.98* 12.97* 13.09*
79 8 .14 .09 18.90* 16.89* 19.22* 19.68*
83 8 .45 .28 9.01 7.54 12.12* 9.55
92 10 .38 .29 9.78 9.45 15.29* 17.59*
93� 10 .38 .05 15.18* 14.37* 14.54* 14.47*

NOTE.—An asterisk (*) indicates SNPs showing regionwide significance
( ) by at least one of the methods (single point, SBOV, and MOV).a p .05
The regionwide thresholds for the single-point, TDT, SBOV, and MOV tests
are 11.28, 10.66, 11.2, and 11.90, respectively, and are based on 1,000
simulations under the null hypothesis. Markers with a plus sign (�) were
found elsewhere7 to be associated with CD.

a q is allele frequency among nontransmitted alleles.
b pm is the proportion of missing genotypes.

tests in the situation in which the causal SNP is one of the typed
tSNPs. The simulation is performed as above, with only the 27
tSNPs assumed to be typed and with the typed causal variant
taken to be the same as in the first set of simulations.

Results
Simulation Results

We obtained the empirical type I error, at the nominal .05
level, for the site-specific tests that are based on single-
point, SBOV, and MOV and for the regionwide tests based
on single-point, SBOV, and SBVV. In each case, the em-
pirical type I error is not significantly different from the
nominal, which indicates that the empirical assessment
of significance is working appropriately (data not shown).

Table 1 gives a power comparison of the site-specific
single-point, SBOV, and MOV association tests based on
dense SNPs or tSNPs, where the test is performed at a
causal SNP typed with proportion pm of genotypes missing.
When , the single-point, SBOV, and MOV tests arep p 0m

identical, so their power to reject the null is the same. Not
surprisingly, as p (frequency among transmitted) gets far-
ther from q (frequency among nontransmitted), the power
to detect association increases for all three methods. As
pm increases, the power of single-point analysis decreases
the most, whereas, with dense SNPs, there is almost no
change in the power of the multipoint methods (SBOV
and MOV) when there are up to 30% missing genotypes.
The multipoint methods retain power because they make
use of the fact that nearby markers in the same block and/
or neighboring blocks provide information on the marker
that has missing genotypes. In the dense-SNP case, there
are 10 other markers in the same block (block 4) with the
causal SNP, which provide close-to-perfect information on
the missing genotypes. In the tSNP case, there are only
two other tSNPs in the same block with the causal SNP,
so the power of MOV is higher than that of SBOV in that
case, because MOV extracts extra information from other
blocks.

Table 2 compares the power of the regionwide single-
point, SBOV, MOV, SBVV, and MVV association tests that
are based on tSNPs in the case where the causal SNP is
untyped. It is clear that the two VV methods—SBVV and
MVV—have much higher power than do the other meth-
ods, with MVV performing the best in all cases. Figures 1
and 2 compare the methods in terms of their ability to
localize the untyped variant, for the case where the causal
variant is in block 4. The VV methods—MVV and SBVV—
are clearly far superior to the others in terms of their ability
to localize the untyped variant. The results are even more
dramatic in block 9, where there are more missing data
(figs. 3 and 4), with the VV methods far outperforming
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Table 6. Regionwide-Significant VVs Based on tSNPs of
the CD Data Set2

Block and VV

Log-Likelihood–
Ratio Test Statistic

Value
Marker

Index(es)a tSNPbMVV SBVV

3:
(1, 23r) 14.06 11.22 18 Yes

4:
(1, 234r) 17.64 16.78 26, 27, 28, 34 Yes (34)
(12, 34r) 13.26 12.58 No No

5:
(1, 234r) 14.20 14.36 39 Yes

6:
(1, 23r) 14.38 12.26 42 Yes

7:
(1, 2345r) 16.92 16.54 74 Yes
(12, 345r) 15.58 10.54 49, 73 Yes (49)
(13, 245r) 12.58 12.16 No No
(15, 234r) 13.56 13.60 No No
(24, 135r) 13.70 10.80 No No

8:
(1, 2345r) 22.44 22.68 78 Yes
(2, 1345r) 18.08 15.92 79 No
(5, 1234r) 15.94 13.56 No No
(12, 345r) 16.52 13.92 No No
(13, 245r) 20.52 22.82 No No
(14, 235r) 20.16 19.20 No No
(15, 234r) 15.64 13.56 83 Yes
(23, 145r) 14.30 11.32 No No
(24, 135r) 17.06 15.88 No No
(25, 134r) 20.40 20.88 80 No
(35, 124r) 15.98 11.56 No No
(45, 123r) 16.22 14.24 No No

9:
(1, 234r) 15.48 12.28 88, 91 No

10:
(12, 34r) 12.34 10.66 97 No
(1, 234r) 11.76 8.54 92, 93, 95 Yes (95)

NOTE.—The thresholds of regionwide significance for SBVV and MVV
are 11.48 and 11.24, respectively.

a Marker index(es) for VV if it is among the 103 typed markers in the
CD data set2; “No” indicates it is not among the 103 typed markers.

b Indicates whether the VV corresponds to one of the tSNPs. A number
in parentheses indicates which marker in the dense set was included in
the tag set if the VV corresponds to more than one typed marker in the
dense set. Table 7. Haplotype-Block Boundaries, with Different

Methods, for the CD Data Set2

Method
No. of
Blocks Block Boundaries

PDa 11 8–9, 14–15, 24, 35, 40, 45, 76–77, 84–85, 91, 98
MDB12b 11 8, 14, 24, 36, 47, 57, 76, 86, 91, 98
htSNPb 10 8, 9, 11, 24, 40, 63, 80, 82, 91
DBc 5 24, 44, 77, 88
EQ10d 10 10, 20, 30, 40, 50, 60, 70, 80, 90
EQ20e 6 20, 40, 60, 80, 90

a Based on the pairwise D′ value and the estimated recombination rates be-
tween adjacent sites.2 The blocks are not strictly adjacent, and four markers (i.e.,
9, 15, 77, and 85) do not belong to any block.

b Based on htSNP criterion1 in the Hapblock8 program.
c Based on haplotype diversity (see the Clayton Web site) in Hapblock8 program.
d Every 10 consecutive markers are grouped as a block, and the last block has

13 markers.
e The first four blocks each have 20 markers, the fifth block has 10 markers,

and the last block has 13 markers.

the others. Note that the maximum log-likelihood ratios
of the non-VV methods (single-point, SBOV, and MOV)
tend to occur at SNPs with a relatively low proportion of
missing genotypes. Furthermore, the non-VV methods are
nearly equal when the proportion of missing genotypes
is low. These two observations explain the fact that the
non-VV methods have essentially equal power for the re-
gionwide test with an untyped causal SNP (table 2).

Table 3 compares the power of the regionwide single-
point, SBOV, MOV, SBVV, and MVV association tests based
on 27 tSNPs when the causal SNP is typed (taken to be
the same SNP as in the first set of simulations). Note that
all five methods have lower power in table 3 than in table
1, because regionwide tests pay a penalty for multiple com-
parisons. Because there is a low proportion (2%) of missing

genotypes at the causal SNP, the non-VV methods have
almost identical power. In this context, the VV methods,
as expected, have somewhat lower power than do the
non-VV methods. This is because, with the VV methods,
we test all combinations of common haplotypes in each
block, so the penalty for multiple comparisons is higher.
When the causal variant is untyped, the extra tests have
a high payoff in terms of power and ability to localize
(table 2 and figs. 1–4), whereas, when the causal variant
is typed, they result in a slight loss of power. In the sim-
ulations with the causal variant typed, all five methods
achieve their maximum mean log-likelihood–ratio values
at the causal variant (figures not shown).

Application to CD Data Set

Goodness of fit of background LD models.—Table 4 verifies
that our HMM with is a not-too-unreasonablee p 0.001
fit to the CD data ( ), with the type I error of ourP p .06
procedure verified to be at the nominal level. In compar-
ison, models with an assumption of linkage equilibrium
(LE) or a Markov model on markers are soundly rejected
(table 4). We find that our parametric bootstrap procedure
does not work (type I ) for testing goodness oferror p 1
fit of the Markov model on blocks ( case). However,e p 0
we note that the Markov model on blocks is approximated
very accurately by the HMM with , with an av-e p 0.001
erage difference in log likelihoods of ! over 1,000 sim-�410
ulations. Therefore, because of its computational simplic-
ity, we use the Markov model on blocks as the background-
LD model in our full multipoint-likelihood methods (MOV
and MVV). We see this as a reasonable compromise be-
tween overcomplicated and computationally intractable
models on the one hand and simple models with obvious
misfit on the other hand. Finally, we note that, because
we use a nonparametric method to assess significance,
model misfit would affect not the validity of the MOV and
MVV tests but just their power. (The model is not used
for the SBOV and SBVV tests.)



www.ajhg.org The American Journal of Human Genetics Volume 80 January 2007 121

Figure 6. Log-likelihood–ratio test statistic values, from MOV (top) and SBOV (bottom), based on PD (black line), MDB (red line),
htSNP (green line), DB (pink line), EQ10 (blue line), and EQ20 (yellow line) block boundaries for the CD data set.2 In each graph, the
horizontal axis represents the 103 SNPs, with equal distances according to the map order.

Analysis of the dense-SNP data.—All five methods detect
significant association of CD to the region by use of re-
gionwide tests that are based on the dense-SNP set. The
estimated regionwide P value for the single-point method
was 0 (95% CI 0–.003); for SBOV, .02 (95% CI 0–.006); for
MOV, .02 (95% CI 0–.006); for SBVV, .01 (95% CI 0–.007);
and for MVV, .02 (95% CI 0–.006). In every block, the
most-significant VVs identified by the SBVV and MVV
tests are in perfect LD with typed markers, so there is no
evidence of untyped variation that would provide a stron-
ger association signal. For that reason, we focus in this
subsection on the results of the single-point, SBOV, and
MOV analyses. The VV methods are expected to be most
useful in the tSNP scenario considered in the “Analysis of
the tSNP data” section.

Table 5 lists 13 SNPs significantly associated at the .05
level by at least one of the regionwide tests that are based
on single-point, SBOV, or MOV, with TDT values included
as a comparison. Notably, all 13 of the SNPs are regionwide
significant at the .05 level on the basis of SBOV alone.
Table 5 shows that the test-statistic values—and, hence,
the significance of the associated SNPs—are much higher
with the multipoint methods. It has been reported7 that
there are 11 SNPs in the same region that have alleles that
are unique to a risk haplotype found to be significantly
associated to CD by use of the TDT. Of those 11 SNPs,
only 9 seem to be included in the CD data set, and all of
these are included in table 5. The phased haplotype data
are consistent with those nine SNPs, as well as with mark-
ers 42 and 92, each having an allele that is unique to the

most common haplotype in each block. Of the 13 markers
in table 5, 6 were detected only by the multipoint methods
and not by the single-point or TDT methods. Marker 79
does not have an allele that is unique to the risk haplotype,
but it is the most significant SNP by all four methods,
which suggests it could be worthy of further investigation.

Analysis of the tSNP data.—We applied the multipoint
mapping methods for VVs (SBVV and MVV) to the tSNPs
of the CD data set. In our tSNP set, we include some but
not all of the most significantly associated SNPs from the
dense set, to see whether our MVV and SBVV methods can
detect the presence of additional untyped variants associ-
ated with the trait. For example, there are eight markers
with MOV log-likelihood–ratio test statistic value 114,
whereas, in our set of tSNPs, we choose only two of them.

Figure 5 shows the log-likelihood–ratio test statistic val-
ues that are based on the SBVV and MVV methods for
each VV in each block. Both MVV and SBVV achieve their
maximums at VV (1, 2345r) in block 8, with MVV log-
likelihood–ratio test statistic value of 22.44 and SBVV log-
likelihood–ratio test statistic value of 22.68 (table 6), which
again indicate that this region is significantly associated
with the disease. (The thresholds of regionwide significance
for SBVV and MVV are 11.48 and 11.24, respectively.) Ta-
ble 6 lists VVs that are regionwide significant on the basis
of MVV or SBVV and their relationship with the dense-
SNP set and the tSNP set. For example, VV (2, 1345r) in
block 8, which is regionwide significant on the basis of
both MVV and SBVV, corresponds to marker 79 (which
has the highest log-likelihood–ratio test statistic value
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Table 8. Regionwide Significant SNPs, by MOV or SBOV with Different Block
Boundaries, in the CD Data Set2

Significant
Marker

Block Algorithm

PD MDB htSNP DB EQ10 EQ20

Ma Sb M S M S M S M S M S

18 * * *
20 *
26 � * * * * * * * * * * * *
27 � * * * * * * * * * * * *
28 � * * * * * * * * * * * *
34 � * * * * * * * * * * * *
39 � * * * * * * * * * * * *
42 * * * * * * * * * * *
49 � * * * * *
57 *
66 *
73 * *
74 � * * * * * * * * * * * *
78 � * * * * * * * * * * * *
79 * * * * * * * * * * * *
83 * *
86 * *
87 * *
91 * * *
92 * * * * * * * * * * * *
93 � * * * * * * * * * * * *
94 * *

NOTE.—Regionwide significant SNPs are indicated by an asterisk (*). Markers with a plus sign
(�) were found elsewhere to be associated with CD.7

a Significant with MOV.
b Significant with SBOV.

based on the MOV analysis) in the dense-SNP set, but it
does not correspond to any of the tSNPs, which suggests
that our MVV and SBVV methods have power to detect
such “untyped” variants that are strongly associated with
the trait. Furthermore, we notice that, from block 3 to
block 10, VVs that correspond to common haplotype 1—
namely, (1, 23r) in blocks 3, 6, and 10; (1, 234r) in blocks
4, 5, and 9; and (1, 2345r) in blocks 7 and 8—are all found
to be significant, which suggests that the first common
haplotype across the whole region (or, more precisely,
from block 3 to block 10) is strongly associated with the
trait. This observation is consistent with the risk haplotype
found in previous studies.7

SBOV and MOV with different block boundaries.—In our
multipoint mapping methods, we assume that haplotype-
block boundaries have been identified. There are many
ways to define a haplotype block, and we are interested
in the question of whether our multipoint mapping meth-
od is robust to different haplotype-block definitions. To
answer this question, we considered six different haplo-
type-block definitions: PD (pairwise D′)2 is based on the
pairwise D′ value and the estimated recombination rates
between adjacent sites, MDB (MDBlocks)12 is based on the
minimum-description-length principle, htSNP1 aims to
minimize the total number of SNPs needed to represent
the common haplotypes in the whole region, and DB (di-
versity-based) is based on a haplotype diversity measure

(see the Clayton Web site). As a complement to these more
principled block-boundary methods, we present two sim-
plistic methods, EQ10 and EQ20, which simply put block
boundaries every ∼10 SNPs and every ∼20 SNPs, respec-
tively. In particular, with 103 SNPs in the region of inter-
est, EQ10 puts 10 SNPs in each of the first nine blocks and
13 SNPs in the 10th block, whereas EQ20 puts 20 SNPs in
each of the first four bocks, 10 SNPs in the 5th block, and
13 SNPs in the 6th block. (We tried combining the 5th
and 6th blocks, but the resulting high level of haplotype
diversity resulted in slower computations.) Table 7 lists
the block boundaries from those six methods. The block
boundaries resulting from the application of the PD, MDB,
htSNP, and DB methods to the CD data set2 have been
reported elsewhere.2,12

We apply SBOV and MOV to the CD data set with these
different block boundaries. Figure 6 shows the log-likeli-
hood–ratio test-statistic curves of MOV and SBOV, based
on the block boundaries of PD, MDB, htSNP, DB, EQ10,
and EQ20, in different colored lines. The six different log-
likelihood–ratio test-statistic curves are remarkably close
to each other, suggesting that the methods are reasonably
robust to choice of block boundaries. Table 8 lists the SNPs
that are regionwide significant by MOV and SBOV with
use of different block boundaries. Of the nine SNPs found
elsewhere to be associated with CD,7 all but one (SNP 49)
are found to be significant by all 12 tests, regardless of
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choice of block boundaries. For marker 49, in the cases in
which it is not regionwide significant, its MOV value or
SBVV value is close to the significance threshold.

In this example, the multipoint mapping methods (SBOV
and MOV) seem rather robust to different block bound-
aries, in the sense that the same SNPs tend to be detected
with different choices of block boundaries, and the log-
likelihood–ratio test-statistic curves have similar shape as
well.

Discussion

We have developed novel methods, for multipoint LD
mapping of binary traits, that make explicit use of hap-
lotype-block structure. In particular, our SBVV method has
a desirable combination of high power, accurate locali-
zation, relatively few modeling assumptions, and compu-
tational feasibility.

Multipoint LD mapping has major advantages over sin-
gle-point analysis when a variant of interest is untyped,
in which case genotypes at multiple markers can often
jointly provide considerably more information on the un-
typed variant than single markers can. One difficulty in
using this information is the large number of possible mul-
timarker tests, which can reduce power when appropriate
correction is made for multiple comparisons. Our strategy
is to make explicit use of inferred block structure to de-
termine a relatively small number of VVs to test. In our
simulations, this strategy (used in MVV and SBVV meth-
ods) has much higher power than does single-point anal-
ysis and is vastly more accurate for localization.

Another difficulty with multipoint methods is that they
are computationally more challenging than single-point
methods and may rely on modeling assumptions about
background LD. We avoid both of these difficulties in our
SBVV method by using the inferred block structure to ap-
proximate the full multipoint likelihood by the local mul-
tipoint likelihood for the block. With a single 3.4-GHz
Pentium 4 processor with 1 GB memory, it took 100 s to
analyze a 500-kb region with 27 tSNPs and 138 VVs, where
this includes computing the SBVV statistic for each VV and
obtaining both nominal and regionwide P values based
on 1,000 simulated replicates. To get a rough idea of how
this would scale up, we estimate that the time to analyze
250,000 tSNPs genomewide by this method, assuming an
average of four tSNPs per block and four common haplo-

types per block—resulting in ∼875,000 VVs and including
1,000 simulated replicates to obtain genomewide as well
as nominal P values—would be ∼7 d (the time is approx-
imately linear in the number of VVs). Our code is not
optimized, so future speed-ups may be substantial. Note
that the 1,000 replicates would be able to be trivially paral-
lelized with multiple processors.

In our multipoint LD-mapping methods, we assumed
that haplotype blocks and their common haplotypes have
been inferred. Comparison of results on the basis of six
different methods for inferring blocks indicates that our
methods are reasonably robust to the choice of block
boundaries. Even grouping every 10 or 20 consecutive
markers in a block was effective and might serve well for
a first-pass analysis of data.

Our methods are designed to detect common SNPs (typed
or untyped) that are associated with disease. If there is
a small number of relatively common causal SNPs in a
block, then the SBVV and MVV methods would be ex-
pected to detect them, because they consider all possible
partitions of the set of common haplotypes into two sub-
sets. Similarly, in the case of multiple rare untyped vari-
ants, if the rare variants, as a group, are associated with a
subset of the haplotypes that can be identified by the
tSNPs, then the SBVV and MVV should be able to detect
the association. However, if there is no subset of tagged
haplotypes that happens to be associated with the set of
untyped rare variants, then one would expect that asso-
ciation would be difficult or impossible to detect.

We have approached the problem of using fine-scale LD
information in mapping by summarizing that informa-
tion in terms of inferred haplotype blocks and common
haplotypes. We then used this information both to make
the computations faster and to limit the number of mul-
timarker tests. Another strategy that would target specif-
ically those SNPs typed in HapMap but not in the mapping
study would be to use the HapMap information to deter-
mine specific haplotypes or haplotype combinations that
approximately query these SNPs.

Acknowledgments

We are grateful to Mark Daly for providing us with phased hap-
lotype data and to two anonymous referees for helpful comments.
This work is supported by National Institutes of Health grants
HG001645 and HL084715.



124 The American Journal of Human Genetics Volume 80 January 2007 www.ajhg.org

Appendix A
When genotype data are available for d (the SNP of interest) for all individuals, we have . This propertyT p TSBOV single

is a consequence of the fact that the parameter (p,q) is specified independent of the background LD parameter a pd

. Consider a single trio with complete genotype data available at SNP d but with some genotype data possi-(a ,h � S)h,d

bly missing at other SNPs in the block. The likelihood for this trio, under the model, can be written L(p,q,a ) pd

, where andn 2�n n 2�nt t u uL (p,q)L (a ) L (p,q) p p (1 � p) q (1 � q)1 2 d 1

4

MT MN FT FNL (a ) p a P[YF X ,X ,X ,X p (h ,h ,h ,h )] ,� � ( )2 d h ,d 1 2 3 4k( )4 kp1(h ,h ,h ,h )�S1 2 3 4

where X and Y are as defined in the “Full Multipoint-Association Analysis” section. Thus, the likelihood factors into
two independently parameterized parts, and this factorization continues to hold when the likelihoods for independent
trios are multiplied together. Since does not change between the null and alternative models and is specifiedL (a ) a2 d d

independent of p and q, the maximized is the same in both the null and alternative models and so cancels outL (a )2 d

of the likelihood ratio. Note that is just the single-point likelihood. When there are incomplete genotype dataL (p,q)1

for the SNP of interest, this factorization no longer holds (because L1 moves inside the summation over the complete
data), and the two likelihood-ratio test statistics TSBOV and Tsingle are, in general, different. These arguments easily generalize
to TMOV.

Appendix B
In assessing goodness of fit of the HMM for background LD, we consider a smoothed version of the model. First,

consider the smoothed single-block model

P(X p i) p (1 � K e)f � e f (B1)′�i i′ ′i :Fi �iFp1

for . Here, K is the number of SNPs in the block, e is a fixed constant with , (fi,i�S) is a parameter vector,i � S 0 � e � 1/K
and the summation is over all haplotypes i′ that differ from i at exactly one site. Equation (B1) can be interpreted as
saying that, to construct a realization of X, a haplotype is drawn from f, and, then, with probability , the observed1 � Ke

haplotype is the same as the one drawn, whereas, with probability , it is one site off from the one drawn, where theKe

site that differs is drawn uniformly from the typed SNPs in the block. An estimate of f can be obtained by maximum-
likelihood estimation.

We extend this approach to multiblock haplotypes for trios by applying a similar smoothing idea to our Markov
model. Let for have the same meaning as in the “Full Multipoint-Association Analysis”MT MN FT FNX p (X ,X ,X ,X ) 1 � t � Bt t t t t

section. Let be a quadruple of possible haplotypes and be the quadrupleMT MN FT FN 4 MT MN FT FNh p (h ,h ,h ,h ) � S h p (h ,h ,h ,h )t t t t t

of haplotypes for block t obtained by restricting h to block t. Then, our smoothed model is

B

MT T MN N FT T FN NP[(X ,…,X ) p (x ,…,x )] p f(h ,v )f(h ,v )f(h ,v )f(h ,v ) G (x ,h ) ,� �1 B 1 B t t t
4 tp1h�S

where and represent, respectively, the probability of haplotype h under the unconstrained Markov modelsT Nf(h,v ) f(h,v )
(indexed by block) for transmitted and nontransmitted haplotypes. Here, , whereG (x ,h ) p (1 � 4K e)I � eIt t t t x ph Fx �h Fp1t t t t

denotes the event that the quadruple of haplotypes has exactly three of its haplotypes equal to theFx � h F p 1 xt t t

corresponding haplotypes of and one of its haplotypes differing from the corresponding haplotype of by exactlyh ht t

one site. This form for is obtained by applying equation (B1) to the four independent chains and neglecting higher-Gt

order terms in e.

Web Resources

The URLs for data presented herein are as follows:

D. Clayton, http://www.nature.com/ng/journal/v29/n2/extref/
ng1001-233-S10.pdf (for “Choose a set of haplotype tagging
SNPs from a large set of diallelic loci”)

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for CD)
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